INSTALL(8) NetBSD System Manager's Manual INSTALL(8) NAME INSTALL - Installation procedure for NetBSD/hp300. CONTENTS About this Document............................................2 Dedication.....................................................2 What is NetBSD?................................................2 Upgrade path to NetBSD 1.6.2...................................2 Changes Between The NetBSD 1.6.1 and 1.6.2 Releases............3 Kernel......................................................3 Networking..................................................3 Security....................................................4 System administration and user tools........................4 Miscellaneous...............................................4 hp300 specific..............................................4 Changes Between The NetBSD 1.6 and 1.6.1 Releases..............4 Kernel......................................................5 Networking..................................................5 File system.................................................6 Security....................................................6 System administration and user tools........................6 Miscellaneous...............................................6 Changes Between The NetBSD 1.5 and 1.6 Releases................7 Kernel......................................................7 Networking..................................................8 File system.................................................8 Security....................................................9 System administration and user tools........................9 Miscellaneous...............................................9 The Future of NetBSD..........................................10 Sources of NetBSD.............................................11 NetBSD 1.6.2 Release Contents.................................11 NetBSD/hp300 subdirectory structure........................13 Binary distribution sets...................................13 NetBSD/hp300 System Requirements and Supported Devices........15 Supported hardware.........................................15 Unsupported hardware.......................................17 Getting the NetBSD System on to Useful Media..................17 Preparing your System for NetBSD installation.................19 Formatting your hard drives................................20 Designing your disk's partition table......................20 Installing the bootstrap program locally...................21 Installing the miniroot file system locally................22 Configuring the netboot server.............................22 Put Series 400 systems in HP-UX Compatible Boot Mode.......26 Searching for a bootable system............................27 Selecting ethernet port on Series 400......................28 Running SYS_INST...........................................28 Chosing a kernel location..................................30 Installing the NetBSD System..................................30 Post installation steps.......................................31 Upgrading a previously-installed NetBSD System................33 Upgrading using the miniroot...............................34 Manual upgrade.............................................35 Compatibility Issues With Previous NetBSD Releases............36 Issues affecting an upgrade from NetBSD 1.5................36 Issues affecting an upgrade from NetBSD 1.4 or prior.......37 Using online NetBSD documentation.............................37 Administrivia.................................................38 Thanks go to..................................................38 We are........................................................41 Legal Mumbo-Jumbo.............................................45 The End.......................................................47 DESCRIPTION About this Document This document describes the installation procedure for NetBSD 1.6.2 on the hp300 platform. It is available in four different formats titled INSTALL.ext, where .ext is one of .ps, .html, .more, or .txt: .ps PostScript. .html Standard Internet HTML. .more The enhanced text format used on UNIX-like systems by the more(1) and less(1) pager utility programs. This is the format in which the on-line man pages are generally pre- sented. .txt Plain old ASCII. You are reading the ASCII version. Dedication The NetBSD Foundation would like to dedicate the NetBSD 1.6.2 release to the memory of Erik Reid, who went missing and is presumed dead in a sail- ing accident on 18 February 2004. Erik's contributions to NetBSD includ- ed work on support for SGI MIPS R4000, integrating XFree86 Direct Render- ing Interface (DRI), and managing the build lab. His death came as a shock, and he will be greatly missed by all of us. May he rest in peace. What is NetBSD? The NetBSD Operating System is a fully functional Open Source UNIX-like operating system derived from the University of California, Berkeley Net- working Release 2 (Net/2), 4.4BSD-Lite, and 4.4BSD-Lite2 sources. NetBSD runs on fifty three different system architectures (ports), featuring seventeen machine architectures across eleven distinct CPU families, and is being ported to more. The NetBSD 1.6.2 release contains complete bi- nary releases for thirty eight different system architectures. (The fif- teen remaining are not fully supported at this time and are thus not part of the binary distribution. For information on them, please see the NetBSD web site at http://www.netbsd.org/.) NetBSD is a completely integrated system. In addition to its highly portable, high performance kernel, NetBSD features a complete set of user utilities, compilers for several languages, the X Window System, firewall software and numerous other tools, all accompanied by full source code. NetBSD is a creation of the members of the Internet community. Without the unique cooperation and coordination the net makes possible, it's likely that NetBSD wouldn't exist. Upgrade path to NetBSD 1.6.2 If you are not installing your system ``from scratch'' but instead are going to upgrade an existing system already running NetBSD you need to know which versions you can upgrade with NetBSD 1.6.2. NetBSD 1.6.2 is an upgrade of NetBSD 1.6.1 and earlier major and patch releases of NetBSD. The intermediate development versions of code available on the main trunk in our CVS repository (also known as ``NetBSD-current'') from after the point where the release cycle for 1.6 was started are designated by ver- sion identifiers such as 1.6A, 1.6B, etc. These identifiers do not des- ignate releases, but indicate major changes in internal kernel APIs. Note that the kernel from NetBSD 1.6 can not be used to upgrade a system running one of those intermediate development versions. Trying to use the NetBSD 1.6 kernel on such a system will probably result in problems. Please also note that it is not possible to do a direct ``version'' com- parison between any of the intermediate development versions mentioned above and 1.6 to determine if a given feature is present or absent in 1.6. The development of 1.6 and the subsequent ``point'' releases is done on a separate branch in the CVS repository. The branch was created when the release cycle for 1.6 was started, and during the release cycle of 1.6 and its patch releases selected fixes and enhancements have been imported from the main development trunk. Changes Between The NetBSD 1.6.1 and 1.6.2 Releases The NetBSD 1.6.2 release provides numerous significant functional en- hancements, including support for many new devices, integration of hun- dreds of bug fixes, patches and updates to kernel subsystems, and many user-land enhancements. The result of these improvements is a stable op- erating system fit for production use that rivals most commercially available systems. It is impossible to completely summarize over nine months of development that went into the NetBSD 1.6.2 release. Some highlights include: Kernel o With pciide(4), make Promise controllers do DMA with large disks re- quiring 48-bit LBA drives. o Add error detection when running low on swap, to improve stability in low-memory situations. o Support for more SiS controllers were added to pciide(4). o Support for the new PowerBook G4 12-inch added. o mlx(4) stability improved. o Support for ICH5 added to pciide(4). o A long-standing stability problem with the original Sun4c sparc sys- tems (SS1, SS1+, and IPC) has been found and fixed. Some optimiza- tions done for these systems as well. o Sun3, Sun3x, and Sun2 may now boot from tape files, through addition of seek support for tape files. o The USERCONF option has been added to the i386 kernels; see userconf(4) for more information. o Hardware random number generator support for Intel 865 and 875P chipsets added. o Fix wdc(4) to work with pre-ATA drives. o Shared libraries and other files mapped executable now count as TEXT pages for vm-usage purposes. This should allow for more appropriate handling of these pages compared to other normal file buffer pages. o General support for multi-function pcmcia cards has been fixed. o Various fixes to linux emulation have been added. Networking o rtk(4) multicast problem fixed. o fxp(4) support yet a few more chip variants. o tulip(4) driver fixed so that the DEC Alpha PWS no longer panics. o Path MTU discovery black-hole detection has been added. o bce(4) driver added for Broadcom BCM4401 chipset, as seen in recent Dell laptops. o A workaround has been added for a race condition in the networking code which could corrupt the callout data structure. o Various networking stack fixes for IPv4, IPv6 and IPSEC. Security o NetBSD-SA2003-018 DNS negative cache poisoning o NetBSD-SA2003-017 OpenSSL multiple vulnerability o NetBSD-SA2003-016 Sendmail - another prescan() bug CAN-2003-0694 o NetBSD-SA2003-015 Remote and local vulnerabilities in XFree86 font libraries o NetBSD-SA2003-014 Insufficient argument checking in sysctl(2) o NetBSD-SA2003-012 Out of bounds memset(0) in sshd o NetBSD-SA2003-011 off-by-one error in realpath(3) o NetBSD-SA2003-010 remote panic in OSI networking code System administration and user tools o Possible crash in vi(1) triggered by an error was fixed. o XFree86 upgraded to version 4.3.0 for those architectures which use XFree86 version 4. o scsictl(8) now supports a few new commands. o BIND has been upgraded to version 8.3.7. o DHCP has been upgraded to version 3.0.1rc11 with various fixes. o CVS has been upgraded to version 1.11.10. Miscellaneous o At least one problem causing sysinst to crash has been fixed, and a progress bar has been added as an option to monitor the progress of the extraction of the install sets. o Package tools upgraded to version 20030918. And of course there have also been innumerable bug fixes and other mis- cellaneous enhancements. You can look for this trend to continue. hp300 specific Changes Between The NetBSD 1.6 and 1.6.1 Releases The NetBSD 1.6.1 release provides numerous significant functional en- hancements, including support for many new devices, integration of hun- dreds of bug fixes, patches and updates to kernel subsystems, and many user-land enhancements. The result of these improvements is a stable op- erating system fit for production use that rivals most commercially available systems. It is impossible to completely summarize over seven months of development that went into the NetBSD 1.6.1 release. Some highlights include: Kernel o Hardware random number support for some Intel chipsets has been added. o Support for additional Adaptec RAID controllers has been added to aac(4). o A number of bugs in the VM system have been fixed. o Bug fixes to audio(4), dpt(4), eap(4), emuxki(4), iop(4), siop(4) and umass(4). o Some Linux compatibility bugs have been fixed. o A number of USB bugs have been fixed. o acorn32 and acorn26 module recognition overhauled; APDL IDE should now work. o pciide(4) support has been extended to support Promise Ultra133TX2, Promise Ultra133TX2v2, HighPoint HPT372, Ultra/133 on VIA VT8233A, and the VIA VT8235. o Many changes to the arm architecture support, mostly triggered by evbarm port infrastructure changes. o Amiga boot handling has been modified to better handle certain ma- chine configurations. Networking o IPv6 fixes to various tools. o Bug fixes to the tlp(4) and xi(4) drivers. o Enhancements to the pcn(4) driver. o rtk(4) now supports Planex FNW-3603 cardbus ethernet card. o ex(4) multicast handling has been fixed. o wi(4) now supports Netgear MA401RA card. o wm(4) now supports more chip variants. o aue(4) now supports SMC 2206USB/ETH EZ Connect adapter. o sip(4) now has some Tx interrupt mitigation code, and improved sup- port for 64-bit DP83820 cards. o The fxp(4) driver has been improved for better support of certain i82558 revisions, and has been fixed to recognize some more chips. o IPFilter has been upgraded to version 3.4.29. Please note that this requires a synchronized upgrade of kernel and the ipf user programs to work properly. o Support for Broadcom Gigabit Ethernet devices has been added by the addition of the bge(4) driver. o Some IPsec bugs have been fixed (from KAME). o Some ftpd(8) interoperability bugs have been fixed. o mopd(8) fixes to make the program load correctly. o A number of pppoe(4) bugs have been fixed. File system o A number of FFS and NFS bugs have been fixed. o Several fixes to ffs(4) soft dependencies handling have been incorpo- rated. o Some NFSv3 fixes have been applied to amd(8). o Some fsck(8) bugs have been fixed. Security o BIND has been updated to 8.3.4 and security patches applied to named(8) and the libc resolver. o Various security patches have been applied to sendmail. o Padding has been added to minimum-sized IP packets in several ether- net drivers to prevent unintented information leakage. o OpenSSL has been updated to 0.9.6g and a number of security patches applied. o A potential buffer overflow in zlib has been fixed. o Buffer overflow bugs in file(1) have been fixed. o Some Kerberos 4 security bugs have been addressed. o A umask security problem in GNU tar(1) has been fixed. System administration and user tools o user(8) has seen several fixes, some of them related to MD5 and blow- fish password encryption support. o Changes to gcc for the arm architecture introduces a minor flag day: new and old object files can not be mixed. Required for proper soft- VFP support. o MDC2 build has been made optional, as the algorithm is patended. o The package tools have been updated to the 20030202 version. Miscellaneous o Bug fixes to sysinst, the NetBSD installer. o Various cross-build fixes have been incorporated. o Various fixes to the toolchain and build process. o Various fixes to the rc.d subsystem. o A large number of sparc64 fixes have been applied. o Timezone files have been updated to tz2002d. o Many new packages have been added to The NetBSD packages collection, including the latest open source desktop KDE3, OpenOffice.org, as well as a large number of bugs fixed, many addressing security is- sues. And of course there have also been innumerable bug fixes and other mis- cellaneous enhancements. You can look for this trend to continue. Changes Between The NetBSD 1.5 and 1.6 Releases The NetBSD 1.6 release provides numerous significant functional enhance- ments, including support for many new devices, integration of hundreds of bug fixes, new and updated kernel subsystems, and many user-land enhance- ments. The result of these improvements is a stable operating system fit for production use that rivals most commercially available systems. It is impossible to completely summarize over eighteen months of develop- ment that went into the NetBSD 1.6.2 release. Some highlights include: Kernel o Ports to new platforms including: algor, dreamcast, evbarm, hpcarm, hpcsh, newsmips, sandpoint, sgimips, sun2, and walnut. o Unified Buffer Cache (UBC) removes size restriction of the file sys- tem's buffer cache to use all available RAM (if not otherwise used!) and improves overall system performance. o Round-robin page colouring implemented for various ports for better cache utilisation, more deterministic run-time behaviour, and faster program execution. o A rewritten SCSI middle layer to provide a cleaner interface between the different kernel layers, including a kernel thread to handle er- ror recovery outside of the interrupt context. See scsipi(9). o A new pipe implementation with significantly higher performance due to lower overheads, which uses the UVM Page Loan facility. o New boot loader flags -v (bootverbose) and -q (bootquiet), to be used by kernel code to optionally print information during boot. o An in-kernel boot time device configuration manager userconf(4), ac- tivated with the -c boot loader flag. o A work-in-progress snapshot of ACPI support, based on the 20010831 snapshot of the Intel ACPICA reference implementation. o USB 2.0 support, in the form of a preliminary driver for the ehci(4) host controller. o Basic kernel support for IrDA in the form of the irframe(4) IrDA frame level driver. Serial dongles and the oboe(4) driver are cur- rently supported. o Kernel configuration files can be embedded into the kernel for later retrieval. Refer to INCLUDE_CONFIG_FILE in options(4) for more in- formation. o Many more kernel tunable variables added to sysctl(8). o Linux binary emulation has been greatly improved, and now supports Linux kernel version 2.4.18. Networking o Hardware assisted IPv4 TCP and UDP checksumming and caching of the IPv6 TCP pseudo header. Support for checksum offloading on the DP83820 Gigabit Ethernet, 3Com 3c90xB, 3Com 3c90xC, and Alteon Tigon/Tigon2 Gigabit Ethernet cards. o Zero-Copy for TCP and UDP transmit path achieved through page loaning code for sosend(). o In-kernel ISDN support, from the ISDN4BSD project. o 802.1Q VLAN (virtual LAN) support. See vlan(4). o IPFilter now supports IPv6 filtering. o ndbootd(8) added; used to netboot NetBSD/sun2 machines. o racoon(8) added; IKE key management daemon for IPsec key negotiation, from the KAME project. o WEP encryption supported in ifconfig(8) and awi(4) driver. o wi(4) and wiconfig(8) now support scanning for access points, and de- faults to BSS instead of ad-hoc mode. o Bridging support; currently only for ethernet. See bridge(4). o In-kernel PPP over Ethernet (PPPoE) - RFC 2516, with much lower over- head than user-land PPPoE clients. See pppoe(4). o ifwatchd(8) added; invokes up-script and down-script when a network interface goes up and down. Used by pppoe(4). File system o Enhanced stability of LFS version 2, the BSD log-structured file sys- tem. o dump(8), dumpfs(8), fsck_ffs(8), fsirand(8), newfs(8), and tunefs(8) support a -F option to manipulate file system images in regular files. o makefs(8) added; creates file system images from a directory tree. (Currently ffs only.) o Enhanced ffs_dirpref() by Grigoriy Orlov, which noticeably improves performance on FFS file systems when creating directories, and subse- quently manipulating them. o Fixes for free block tracking and directory block allocation in FFS softdeps. o Correctly support FFS file systems with a large number of cylinder groups. o Fix the endian independant FFS (FFS_EI) support. o newfs(8) calculates default block size from the file system size, and uses the largest possible cylinders/group (cpg) value if -c isn't given. o dpti(4) driver added; an implementation of the DPT/Adaptec SCSI/I2O RAID management interface. Allows the use of the Linux versions of dptmgr, raidutil, dptelog, (etc). o Support for Windows 2000 `NTFS' (NTFS5). o Tagged queueing support for SCSI drivers based on the ncr53c9x con- troller. Security o Addition of a chroot(8) hierarchy for services including named(8), ntpd(8), and sshd(8). o Additional passwd(5) ciphers: MD5, and DES with more encryption rounds. See passwd.conf(5). o Several more code audits were performed. o /etc/security performs many more checks and is far more flexible in how it monitors changes. See security.conf(5). System administration and user tools o sushi(8) added; a menu based system administration tool. o pgrep(1) and pkill(1) added; find or signal processes by name or oth- er attributes. o System upgrades are made easier through the etcupdate(8) script which helps updating the /etc config files interactively, and the /etc/postinstall script which is provided to check for or fix config- uration changes that have occurred in NetBSD. o stat(1) added; a user interface to the information returned by the stat(2) system call. o BSD sort(1) replaces GNU sort(1). o The ``stop'' operation for rc.d(8) scripts waits until the service terminates before returning. This improves the reliability of ``restart'' operations as well. o Swap devices can be removed at system shutdown by enabling swapoff in rc.conf(5). o An optional watchdog timer which will terminate rc.shutdown(8) after the number of seconds provided in rcshutdown_timeout from rc.conf(5). Miscellaneous o Support for multibyte LC_CTYPE locales has been integrated from the Citrus project. Many Chinese, Japanese, Korean, and other encodings are now available. o Full support for cross-compilation of the base system, even as a non- root user! src/build.sh is available for doing arbitrary cross- builds; see src/BUILDING for more information. At least 38 ports for the NetBSD 1.6.2 release were cross-built on a NetBSD/i386 system us- ing this mechanism. o Migrated the following CPU platforms to ELF: arm, and m68k (including amiga, hp300, mac68k, mvme68k, sun2, and x68k). o Updates of most third party packages that are shipped in the base system to the following latest stable releases: - amd 6.0.6 - BIND 8.3.3 - binutils 2.11.2 - bzip2 1.0.2 - cvs 1.11 - dhcp 3.0.1rc9 - file 3.38 - gcc 2.95.3 - groff 1.16.1 - Heimdal 0.4e - IPfilter 3.4.27 - kerberos4 1.1 - ksh from pdksh 5.2.14p2 - less 374 - nvi 1.79 - OpenSSH 3.4 - OpenSSL 0.9.6g - Postfix 1.1.11 - ppp 2.4.0 - routed 2.24 - sendmail 8.11.6 - tcpdump 3.7.1 o Many new packages in the pkgsrc system, including the latest open source desktop KDE3, OpenOffice, perl, Apache and many more. At the time of writing, there are over 3000 third party packages available in pkgsrc. o Added AGP GART driver agp(4) for faster access to graphics boards. o init(8) will create an mfs (memory based file system) /dev if /dev/console is missing. o vmstat(8) displays kernel hash statistics with -H and -h hash. o wscons(4) supports blanking of VGA consoles. Kernel interfaces have continued to be refined, and more subsystems and device drivers are shared among the different ports. You can look for this trend to continue. This is the seventh major release of NetBSD for the HP 9000/300 series of computers. The Future of NetBSD The NetBSD Foundation has been incorporated as a non-profit organization. Its purpose is to encourage, foster and promote the free exchange of com- puter software, namely the NetBSD Operating System. The foundation will allow for many things to be handled more smoothly than could be done with our previous informal organization. In particular, it provides the framework to deal with other parties that wish to become involved in the NetBSD Project. The NetBSD Foundation will help improve the quality of NetBSD by: o providing better organization to keep track of development efforts, including co-ordination with groups working in related fields. o providing a framework to receive donations of goods and services and to own the resources necessary to run the NetBSD Project. o providing a better position from which to undertake promotional ac- tivities. o periodically organizing workshops for developers and other interested people to discuss ongoing work. We intend to begin narrowing the time delay between releases. Our ambi- tion is to provide a full release every six to eight months. We hope to support even more hardware in the future, and we have a rather large number of other ideas about what can be done to improve NetBSD. We intend to continue our current practice of making the NetBSD-current development source available on a daily basis. We intend to integrate free, positive changes from whatever sources sub- mit them, providing that they are well thought-out and increase the us- ability of the system. Above all, we hope to create a stable and accessible system, and to be responsive to the needs and desires of NetBSD users, because it is for and because of them that NetBSD exists. Sources of NetBSD Refer to http://www.netbsd.org/Sites/net.html. NetBSD 1.6.2 Release Contents The root directory of the NetBSD 1.6.2 release is organized as follows: .../NetBSD-1.6.2/ CHANGES Changes since earlier NetBSD releases. LAST_MINUTE Last minute changes. MIRRORS A list of sites that mirror the NetBSD 1.6.2 distribution. README.files README describing the distribution's contents. TODO NetBSD 's todo list (also somewhat incomplete and out of date). patches/ Post-release source code patches. source/ Source distribution sets; see below. In addition to the files and directories listed above, there is one di- rectory per architecture, for each of the architectures for which NetBSD 1.6.2 has a binary distribution. There are also README.export- control files sprinkled liberally throughout the distribution tree, which point out that there are some portions of the distribution that may be subject to export regulations of the United States, e.g. code under src/crypto and src/sys/crypto. It is your responsibility to determine whether or not it is legal for you to export these portions and to act accordingly. The source distribution sets can be found in subdirectories of the source subdirectory of the distribution tree. They contain the complete sources to the system. The source distribution sets are as follows: gnusrc This set contains the ``gnu'' sources, including the source for the compiler, assembler, groff, and the other GNU utilities in the binary distribution sets. 55 MB gzipped, 247 MB uncompressed pkgsrc This set contains the ``pkgsrc'' sources, which contain the in- frastructure to build third-party packages. 12 MB gzipped, 94 MB uncompressed sharesrc This set contains the ``share'' sources, which include the sources for the man pages not associated with any particular program; the sources for the typesettable document set; the dictionaries; and more. 4 MB gzipped, 16 MB uncompressed src This set contains all of the base NetBSD 1.6.2 sources which are not in gnusrc, sharesrc, or syssrc. 27 MB gzipped, 136 MB uncompressed syssrc This set contains the sources to the NetBSD 1.6.2 kernel for all architectures; config(8); and dbsym(8). 22 MB gzipped, 114 MB uncompressed xsrc This set contains the sources to the X Window System. 78 MB gzipped, 394 MB uncompressed All the above source sets are located in the source/sets subdirectory of the distribution tree. The source sets are distributed as compressed tar files. Except for the pkgsrc set, which is traditionally unpacked into /usr/pkgsrc, all sets may be unpacked into /usr/src with the command: # ( cd / ; tar -zxpf - ) < set_name.tgz The sets/Split/ subdirectory contains split versions of the source sets for those users who need to load the source sets from floppy or otherwise need a split distribution. The split sets are named set_name.xx where set_name is the distribution set name, and xx is the sequence number of the file, starting with ``aa'' for the first file in the distribution set, then ``ab'' for the next, and so on. All of these files except the last one of each set should be exactly 240,640 bytes long. (The last file is just long enough to contain the remainder of the data for that distribution set.) The split distributions may be reassembled and extracted with cat as fol- lows: # cat set_name.?? | ( cd / ; tar -zxpf - ) In each of the source distribution set directories, there are files which contain the checksums of the files in the directory: BSDSUM Historic BSD checksums for the various files in that di- rectory, in the format produced by the command: cksum -o 1 file. CKSUM POSIX checksums for the various files in that directory, in the format produced by the command: cksum file. MD5 MD5 digests for the various files in that directory, in the format produced by the command: cksum -m file. SYSVSUM Historic AT&T System V UNIX checksums for the various files in that directory, in the format produced by the command: cksum -o 2 file. The MD5 digest is the safest checksum, followed by the POSIX checksum. The other two checksums are provided only to ensure that the widest pos- sible range of system can check the integrity of the release files. NetBSD/hp300 subdirectory structure The hp300-specific portion of the NetBSD 1.6.2 release is found in the hp300 subdirectory of the distribution: .../NetBSD-1.6.2/hp300/ INSTALL.html INSTALL.ps INSTALL.txt INSTALL.more Installation notes in various file formats, including this file. The .more file contains underlined text using the more(1) conventions for indicating italic and bold display. binary/ kernel/ netbsd-GENERIC.gz A gzipped NetBSD kernel containing code for everything supported in this re- lease. sets/ hp300 binary distribution sets; see below. installation/ miniroot/ hp300 miniroot file system image; see below. misc/ Miscellaneous hp300 installation utilities; see installation section, below. Binary distribution sets The NetBSD hp300 binary distribution sets contain the binaries which com- prise the NetBSD 1.6.2 release for the hp300. There are eight binary distribution sets. The binary distribution sets can be found in the hp300/binary/sets subdirectory of the NetBSD 1.6.2 distribution tree, and are as follows: base The NetBSD 1.6.2 hp300 base binary distribution. You must in- stall this distribution set. It contains the base NetBSD util- ities that are necessary for the system to run and be minimally functional. It includes shared library support, and excludes everything described below. 17 MB gzipped, 41 MB uncompressed comp Things needed for compiling programs. This set includes the system include files (/usr/include) and the various system li- braries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages. 14 MB gzipped, 52 MB uncompressed etc This distribution set contains the system configuration files that reside in /etc and in several other places. This set must be installed if you are installing the system from scratch, but should not be used if you are upgrading. 1 MB gzipped, 1 MB uncompressed games This set includes the games and their manual pages. 3 MB gzipped, 7 MB uncompressed kern-GENERIC This set contains a NetBSD/hp300 1.6.2 GENERIC kernel, named /netbsd. You must install this distribution set. 2 MB gzipped, 3 MB uncompressed man This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets. 7 MB gzipped, 27 MB uncompressed misc This set includes the (rather large) system dictionaries, the typesettable document set, and other files from /usr/share. 3 MB gzipped, 8 MB uncompressed text This set includes NetBSD's text processing tools, including groff(1), all related programs, and their manual pages. 2 MB gzipped, 6 MB uncompressed NetBSD maintains its own set of sources for the X Window System in order to assure tight integration and compatibility. These sources are based on XFree86, and tightly track XFree86 releases. They are currently equivalent to XFree86 3.3.6. Binary sets for the X Window System are distributed with NetBSD. The sets are: xbase The basic files needed for a complete X client environment. This does not include the X servers. 3 MB gzipped, 7 MB uncompressed xcomp The extra libraries and include files needed to compile X source code. 2 MB gzipped, 8 MB uncompressed xcontrib Programs that were contributed to X. 1 MB gzipped, 1 MB uncompressed xfont Fonts needed by X. 6 MB gzipped, 7 MB uncompressed xmisc Miscellaneous X programs. 1 MB gzipped, 1 MB uncompressed The hp300 binary distribution sets are distributed as gzipped tar files named with the extension .tgz, e.g. base.tgz. The instructions given for extracting the source sets work equally well for the binary sets, but it is worth noting that if you use that method, the filenames stored in the sets are relative and therefore the files are extracted below the current directory. Therefore, if you want to extract the binaries into your system, i.e. replace the system binaries with them, you have to run the tar -xpf command from the root directory ( / ) of your system. The following are included in the hp300/installation directory: miniroot/ miniroot.fs.gz A copy of the miniroot file system. misc/ HP-IB.geometry A file containing geometry for some HB-IB disk drives. SYS_INST.gz A gzipped copy of the SYS_INST miniroot in- stallation program. SYS_UBOOT.gz A gzipped copy of the universal boot block. Supports Network, tape and disk booting. This is useful if you are installing a diskless NetBSD/hp300 system. rbootd.tgz Source code for the rbootd program included with NetBSD. It requires that the server has a Berkeley Packet Filter (bpf). You will need to compile this version of rbootd if server system does not have this utility already. The following are included in the hp300/binary/kernel directory: netbsd-GENERIC.gz A gzipped GENERIC kernel. netbsd.RAMDISK.gz A gzipped INSTALL kernel with embedded ramdisk. netbsd.RAMDISK.symbols.gz Symbols for netbsd.RAMDISK.gz. This utility is used only in a Traditional method installation. Note: Each directory in the hp300 binary distribution also has its own checksum files, just as the source distribution does. NetBSD/hp300 System Requirements and Supported Devices NetBSD/hp300 1.6.2 will run on most HP 9000/300- and 400-series machines. The smallest amount of RAM that has been tested is 4 MB. If you wish to run X, more RAM is recommended. Supported hardware o CPUs - 318 (16 MHz 68020, with built-in monochrome framebuffer, no expansion) - 319 (16 MHz 68020, with built-in 6 bit color framebuffer, no expansion) - 320 (16 MHz 68020, 16 KB L2 cache, up to 7.5 MB RAM) Requires Human Interface board - 330 (16 MHz 68020, 4 MB on motherboard, up to 8 MB RAM) Requires Human Interface board - 340 (16 MHz 68030, up to 16 MB RAM) - 345 (50 MHz 68030 with 32 KB L2 cache, up to 128 MB RAM, built-in SCSI) - 350 (25 MHz 68020, 32 KB L2 cache, up to 48 MB RAM) Requires Human Interface board - 360 (25 MHz 68030, with 4 MB RAM built-in, up to 48 MB RAM) Requires System Interface board - 362 (25 MHz 68030, up to 16 MB RAM, built-in SCSI) Framebuffer is unsupported, you must use a serial console - 370 (33 MHz 68030, 64 KB L2 cache, up to 48 MB RAM) Requires System Interface board - 375 (50 MHz 68030 with 32 KB L2 cache, up to 128 MB RAM, built-in SCSI) - 380 (25 MHz 68040, up to 128 MB RAM, built-in SCSI) - 382 (25 MHz 68040, up to 32 MB RAM, built-in SCSI) Framebuffer is unsupported, you must use a serial console - 385 (33 MHz 68040, up to 128 MB RAM, built-in SCSI) - 400s, 400t, 400dl (50 MHz 68030 with 32 KB L2 cache, built- in SCSI, up to 128 MB RAM) - 425s, 425t, 425dl (25 MHz 68040 with built-in SCSI, up to 128 MB RAM) - 425e (25 MHz 68040, built-in SCSI) The BootROM does not support serial console and NetBSD/hp300 does not support the 425e framebuffer. When the NetBSD kernel begins to boot it will default to using the serial port for console - 433s, 433t, 433dl (33 MHz 68040 with built-in SCSI, up to 128 MB RAM) o HP-IB devices - rd; CS80 disks: 2200, 2203, 7912, 7914, 7933, 7936, 7937, 7945, 7946, 7957, 7958, and 7959 - rd; CS80 floppy disks: 9122, 9134 (possibly others) Requires use of HP-UX LIF utilities via HP-UX emulation - ct; CS80 Low-density 16 track cartridge (67 MB): 7912, 7914, 7946, and 9144 Cannot read or write to 32 track tapes - ct; CS80 High-density 32 track cartridge (134 MB): 9145 Cannot write to 16 track tapes (read only) - mt; CS80 Half-inch tape: 7974A, 7978A/B, 7979A, 7980A, and 7980XC. Note: You should connect HP-IB tape drives and printers to the slow HP-IB interface and hard drives to the fast HP-IB interface (if present). o SCSI devices - sd; SCSI hard drives Some SCSI II drives may have problems (not very common) - sd; SCSI CD-ROM drives Support for data only (no audio CDs) - sd; SCSI Magneto-optical drives - st; SCSI tape drives: HP 35450A (DDS-1 DAT), Exabyte EXB-8200 (8mm), Archive (QIC-24), Archive Viper (QIC-60), Archive Viper (QIC-150), Archive Python 25501 (DAT), and Archive Python 28849 (DAT) - ac; SCSI autochangers o Serial interfaces - dca; Built-in single serial port on System Interface board and Human Interface board - apci; Built-in Apollo 4-port on Series 400 workstations - dcm; 98638 8-port (DIO-II board, appears to kernel as two 98642 devices) - dcm; 98642 4-port (DIO-I board) - dca; 98626, 98644 built-in or add-on (DIO-I board) single serial port - dcl; 98628A single port (DIO-I board) Note: See the FAQ for more detailed specs and information on configuring: http://www.netbsd.org/Ports/hp300/faq.html#serialinfo o Network interfaces - le; 98643 built-in and add-on (DIO-I board) ethernet cards. o Graphics Devices - 98544 monochrome Topcat (1024x768, 1 bit, DIO-II) - 98545A color Topcat (1024x768, 4 bits, DIO-II) - 98547 color Topcat (1024x768, 6 bits) - 98548A monochrome Catseye (1024x768, 1 bit) - 98549A color Catseye (1024x768, 6 bits) - 98550A Catseye Hi-Res Color (a.k.a. CH) (1280x1024 @ 60 Hz, 8 bits, DIO-II) - 98700 and 98710 Gatorbox (1280x1024 @ 60 Hz, 4 or 8 bits) Requires 98287 (DIO-I board) to connect to workstation - 98720 and 98721 color Renaissance SRX (1280x1024 @ 60 Hz, 8, 12 or 24 bits) Requires 98724 (DIO-I board) or 98725 (DIO-II board) to connect to workstation - 98730 and 98731 DaVinci TurboSRX (1280x1024 @ 60 Hz, 8, 16, or 24 bits) Requires 98726A (DIO-II board) to connect to workstation - A1096A monochrome Hyperion (1280x1024, 1 bit) - A1416A Kathmandu (a.k.a. Color VRX) (1280x1024 @ 60 hz, 8 bits, DIO-II) o HP-HIL devices - Keyboards - Two and three button mice - 46094 Quadrature Port (supports normal serial mice) - Graphics tablets - Dial boxes - ID modules o Miscellaneous boards/interfaces - 98265A SCSI interface (DIO-I board, daughtercard for 98562, or built-in) - 98561 Human Interface board (DIO-I board with serial port, HP-HIL, and HP-IB) - 98562 System Interface board (DIO-II board with serial port, HP-HIL, HP-IB, DMA, and ethernet, has optional fast HP-IB or SCSI daughterboard) - 98620 DMA card (DIO-I board, for use with 98561) - 98624 HP-IB interface (DIO-I board or built-in) - 98625A and 98625B 'fast' HP-IB interface (DIO-I board or daughtercard for 98562) Each serial interface has its own quirks, and some of them use non-stan- dard pins. The FAQ describes how to configure and connect serial con- soles to hp300 systems. http://www.netbsd.org/Ports/hp300/faq.html#serialconsole When you try booting from a system with a framebuffer that is not sup- ported by NetBSD/hp300, the screen will turn black, and it will try using the serial port for the console. Unsupported hardware o CPUs - 310 (10 MHz 68010, with built-in monochrome framebuffer, rs232 (25 pin), hil, and slow hpib) - 332 (16? MHz 68030, with no floating point unit) o Graphics Devices - SGC support (for 425e built-in EVRX framebuffer) - SGC support (for some rare configurations of 4XXt and 4XXdl workstations) - 98702 TurboVRX DIO-II graphics device - 98705 Tigershark PersonalVRX DIO-II graphics device - internal video on models 362/382 o Miscellaneous boards/interfaces - domain keyboard and mouse, on Series 400 workstations. Needs wscons - parallel port, on 345, 362, 375, 380, 382, 382, and Series 400 workstations - EISA support, on Series 400 workstations - Token Ring cards (a.k.a. ATR) - VME bus adapter, on Series 300 workstations - 98625C fast HP-IB option on models 345 and 375 - internal SCSI floppy drive on 362, 382, and 425e Getting the NetBSD System on to Useful Media You should wait to decide where to put the NetBSD distribution sets until you have figured out how you are going to boot your system. Refer back to this section after you have done so. Installation is supported from several media types, including: o CD-ROM o FTP o Remote NFS partition o Tape o Existing NetBSD partitions, if performing an upgrade The steps necessary to prepare the distribution sets for installation de- pend upon which installation medium you choose. The steps for the vari- ous media are outlined below. CD-ROM Find out where the distribution set files are on the CD- ROM. Proceed to the instruction on installation. FTP The preparations for this installation/upgrade method are easy; all you need to do is make sure that there's an FTP site from which you can retrieve the NetBSD distribution when you're about to install or upgrade. You need to know the numeric IP address of that site, and, if it's not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the nu- meric IP address of the router closest to the NetBSD ma- chine. Finally, you need to know the numeric IP address of the NetBSD machine itself. If you don't have access to a functioning nameserver during installation, the IP ad- dress of ftp.netbsd.org is 204.152.184.75 (as of June, 2002). Once you have this information, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading. Note: This method of installation is recommended only for those already familiar with using BSD network con- figuration and management commands. If you aren't, this documentation should help, but is not intended to be all-encompassing. NFS Place the NetBSD distribution sets you wish to install in- to a directory on an NFS server, and make that directory mountable by the machine on which you are installing or upgrading NetBSD. This will probably require modifying the /etc/exports file on of the NFS server and resetting its mount daemon (mountd). (Both of these actions will probably require superuser privileges on the server.) You need to know the numeric IP address of the NFS server, and, if the server is not on a network directly connected to the machine on which you're installing or upgrading NetBSD, you need to know the numeric IP address of the router closest to the NetBSD machine. Finally, you need to know the numeric IP address of the NetBSD machine it- self. Once the NFS server is set up properly and you have the information mentioned above, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on up- grading. Note: This method of installation is recommended only for those already familiar with using BSD network con- figuration and management commands. If you aren't, this documentation should help, but is not intended to be all-encompassing. Tape To install NetBSD from a tape, you need to make a tape that contains the distribution set files, in `tar' format. If you're making the tape on a UNIX-like system, the easi- est way to do so is probably something like: # tar -cf tape_device dist_directories where tape_device is the name of the tape device that de- scribes the tape drive you're using; possibly /dev/rst0, or something similar, but it will vary from system to sys- tem. (If you can't figure it out, ask your system admin- istrator.) In the above example, dist_directories are the distribution sets' directories, for the distribution sets you wish to place on the tape. For instance, to put the misc, base, and etc distributions on tape (in order to do the absolute minimum installation to a new disk), you would do the following: # cd .../NetBSD-1.6.2 # cd hp300/binary # tar -cf tape_device misc etc kern Note: You still need to fill in tape_device in the example. Once you have the files on the tape, you can proceed to the next step in the installation or upgrade process. If you're installing NetBSD from scratch, go to the section on preparing your hard disk, below. If you're upgrading an existing installation, go directly to the section on upgrading. Upgrade If you are upgrading NetBSD, you also have the option of installing NetBSD by putting the new distribution sets somewhere in your existing file system, and using them from there. To do that, you must do the following: Place the distribution sets you wish to upgrade somewhere in your current file system tree. At a bare minimum, you must upgrade the base and kern bi- nary distributions, and so must put the base and kern sets somewhere in your file system. If you wish, you can do the other sets, as well, but you should not upgrade the etc distribution; it contains contains system configura- tion files that you should review and update by hand. Once you have done this, you can proceed to the next step in the upgrade process, actually upgrading your system. Preparing your System for NetBSD installation There are two installation tools available. The traditional miniroot in- staller is script-based and may be netbooted or may be dumped to a disk and run locally. The ramdisk kernel with the sysinst installation utili- ty is more flexible, but can only be netbooted and has not been exten- sively tested. There are several possible installation configurations described in this document. Other configurations are possible, but less common. If you are unable to install based on the information in this document, post a message to port-hp300@netbsd.org asking for help. The configurations de- scribed in this document are as follows: o hp300 netboots SYS_UBOOT and then runs the miniroot installation tools or a purely diskless installation from a NetBSD server on the same subnet (you must have root access). Other server platforms will work, but are described in the NetBSD Diskless HOW-TO. http://www.netbsd.org/Documentation/network/netboot/ o hp300 loads SYS_UBOOT from a local disk, tape, or floppy and then runs the miniroot installation tools or a purely diskless installa- tion from a NetBSD server on the same subnet (you must have root ac- cess). Other server platforms will work, but are described in the NetBSD Diskless HOW-TO. http://www.netbsd.org/Documentation/network/netboot/ You will need HP-UX on your hp300 if it does not have a SCSI inter- face or a floppy drive. o hp300 loads SYS_INST from a local disk. You partition the drive and then run the miniroot installation tools from that drive. You will need HP-UX on your hp300 if it does not have a SCSI interface. The preferred method is to use another NetBSD server to netboot the hp300 client. This procedure will not work on the handful of models which are incapable of netbooting. In particular, the 320, 350, 330, 318, and 319 might not have a recent enough BootROM. The BootROM revision is printed when your workstation is first powered on (or rebooted). Revision B or later will definitely work. BootROMs with numeric revisions such as 1.1 (on a 400s) will netboot without any problems. You can netboot from any built-in or add-on ethernet board on a model with a supported BootROM. If you have access to a NetBSD/hp300 system, it is much easier to simply upgrade than to install from scratch. Skip down to the section on Upgrading a previously-installed NetBSD System Formatting your hard drives NetBSD/hp300 does not have the capability to perform a low-level format of hard drives. SCSI disks can be formatted on any platform with SCSI support and then used on NetBSD/hp300. HP-IB disks can only be formatted by the HP-UX mediainit(1) command. You may need to first create the de- vice nodes for your disk, as HP-UX was never very good about populating /dev/rdsk propertly. # mknod /dev/dsk/IDs0 b 0 0xSCID00 # mknod /dev/rdsk/IDs0 c 4 0xSCID00 # mediainit -v /dev/rdsk/IDs0 ID is the HP-IB address (a.k.a. slave) of the disk in hexadecimal. This is usually between 00 and 07, but possibly up to 1F (31 decimal) . SC is the Select Code of the disk controller. This is usually 07 for slow (i.e. built-in) HP-IB or 0E (14 decimal) for SCSI or fast HP-IB. Designing your disk's partition table This step can sometimes be a real pain, especially when using SYS_INST. It's best to calculate it ahead of time. If you are installing to an HP-IB disk, you will need information about your disk's geometry, based on 512-byte sectors. The file installation/misc/HP-IB.geometry in the distribution has geometry infor- mation for several HP-IB disks, but may be incomplete. Geometry may be calculated from an HP-UX /etc/disktab entry, but note that HP-UX geometry is based on 1024 byte sectors, while NetBSD 's is based on 512 byte sec- tors. You should have all partitions start on cylinder boundaries. If you are installing to a SCSI disk, you don't need to worry about the details of the geometry. Just create a disklabel based on the total num- ber of sectors available on the disk. A quick note about partitions: Since the target disk will become the boot disk for your new NetBSD/hp300 installation, you will need to treat the `a' and `c' partitions in a special manner. Due to the size of the NetBSD/hp300 boot program (it spills into the area after the disklabel), it is necessary to offset the beginning of the `a' partition. For HP-IB disks, it is best to offset it by one cylinder from the beginning of the disk. For SCSI disks, just offset it by 100 KB (200 sectors). Later, the `c' partition will be marked with the type `boot' and may not be used for a file system. (For those unfamiliar with historic BSD partition conventions, the `c' partition is defined as the `entire disk', or the `raw partition'.) Here is a table of recommended partition sizes for a full install: Partition Suggested Needed / (root) 25 MB 15 MB /usr 150 MB 100 MB /var 20 MB 5 MB swap 2-3 *RAM 6 MB Note: You will need at least a 6 MB swap partition if you are unable to netboot the installer, as the miniroot is temporarily placed in this partition. Here is an example disklabel from a 7959B HP-IB hard drive: # /dev/rrd0a: type: HP-IB disk: rd7959B label: flags: bytes/sector: 512 sectors/track: 42 tracks/cylinder: 9 sectors/cylinder: 378 cylinders: 1572 total sectors: 594216 rpm: 3600 interleave: 1 trackskew: 0 cylinderskew: 0 headswitch: 0 # milliseconds track-to-track seek: 0 # milliseconds drivedata: 0 8 partitions: # size offset fstype [fsize bsize cpg] a: 37800 378 4.2BSD 1024 8192 16 # b: 66150 38178 swap 1024 8192 16 # c: 594216 0 boot # (Cyl. 0 - 1571) d: 489888 104328 4.2BSD 1024 8192 16 # Installing the bootstrap program locally For earlier models incapable of netbooting, you need to install the boot- strap program on a bootable local device, such as a hard disk, floppy disk, or tape drive. If you will be booting the miniroot over the net- work, then you will be installing installation/misc/SYS_UBOOT. If you do not have access to a netboot server to serve the miniroot in- staller, you can use a primitive bootstrap program installation/misc/SYS_INST to load the miniroot from a locally attached device (such as a disk, tape or CD-R). This is not recommended, as SYS_INST is difficult to use, buggy, and provides no error checking when partitioning your disk. If your system has SCSI, this is easy. Just take a scratch SCSI disk (hard disk, zip disk, or CD-R) and use any computer to dump the bootstrap program to it. For example, to dump it to the sd1 disk on a non-i386 platform: # dd if=SYS_UBOOT of=/dev/sd1c If your system has a floppy drive, you can write the bootstrap program to it using any computer with a floppy drive. You will need to dump it us- ing a utility like rawrite or dd(1). Make sure to read back from the floppy to verify that the file has been written correctly. If your system does not have SCSI or a floppy drive, you will need a bootable operating system on your hp300 so you can write files to the HP- IB device. You should probably write the bootstrap program to the disk you will be installing NetBSD onto. Using HP-UX to write to an HP-IB disk: # dd if=SYS_UBOOT of=/dev/rdsk/IDs0 ID is the HP-IB address (a.k.a. slave) of the disk in hexadecimal. This is usually between 00 and 07, but possibly up to 1F (31 decimal) . Using HP-UX to write to an HP-IB tape: # dd if=SYS_UBOOT of=/dev/rmt/0mnb obs=20b conv=sync Installing the miniroot file system locally This step is only necessary if you are not loading the miniroot installer from a netboot server. Follow the same procedure for the bootstrap pro- gram, except use the uncompressed miniroot file system (installation/miniroot/miniroot.fs.gz ) instead of the bootstrap program. The only quirk is that you should place it at the offset of the swap par- tition you calculated above in the disklabel. In the example disklabel above, the offset is 38178 sectors of 512 bytes. Therfore, the dd(1) command would be something like: # gunzip miniroot.fs.gz # dd if=miniroot.fs of=/dev/rdsk/IDs0 seek=38178b Note the `b' after the offset, which specifies blocks of 512 bytes. By dumping the miniroot to disk where the swap partition will be, you're saving a step later where SYS_INST tries to download the miniroot over NFS. Just make sure that when you enter the partition table into SYS_INST you use the same block offset for the swap partition as you dumped the miniroot. Configuring the netboot server This step will configure your netboot server to provide SYS_UBOOT and the miniroot installer to your hp300. 1. Introduction To netboot a hp300, you must configure one or more servers to pro- vide information and files to your hp300 (the `client ).' If you are using NetBSD (any architecture) on your netboot server(s), the in- formation provided here should be sufficient to configure every- thing. Additionally, you may wish to look at the diskless(8) manual page and the manual pages for each daemon you'll be configuring. If the server(s) are another operating system, you should consult the NetBSD Diskless HOW-TO, which will walk you through the steps neces- sary to configure the netboot services on a variety of platforms. http://www.NetBSD.org/Documentation/network/netboot/ You may either netboot the installer so you can install onto a lo- cally attached disk, or you may run your system entirely over the network. Briefly, the netboot process involves discovery, bootstrap, kernel and file system stages. In the first stage, the client discovers information about where to find the bootstrap program. Next, it downloads and executes the bootstrap program. The bootstrap program goes through another discovery phase to determine where the kernel is located. The bootstrap program tries to mount the NFS share con- taining the kernel. Once the kernel is loaded, it starts executing. For RAM disk kernels, it mounts the RAM disk file system and begins executing the installer from the RAM disk. For normal (non-RAM disk) kernels, the kernel tries to mount the NFS share that had the kernel and starts executing the installation tools or init(8). All supported hp300 systems use HP's proprietary RMP (the rbootd(8) dae- mon) for the first discovery stage and bootstrap download stages. The bootstrap program uses DHCP for its discovery stage. NFS is used in both the kernel and file system stages to download the ker- nel, and to access files on the file server. We will use `CC:CC:CC:CC:CC:CC' as the MAC address (ethernet hard- ware address) of your netboot client machine. You should have de- termined this address in an earlier stage. In this example, we will use `192.168.1.10' as the IP address of your client and `client.test.net' as its name. We will assume you're providing all of your netboot services on one machine called `server.test.net' with the client's files exported from the directory /export/client/root. You should, of course, replace all of these with the names, addresses, and paths appropriate to your environ- ment. You should set up each netboot stage in order (i.e. discovery, boot- strap, kernel, and then file system) so that you can test them as you proceed. 2. rbootd(8) Get SYS_UBOOT from the installation/misc directory of the distribu- tion. # mkdir -p /usr/mdec/rbootd # cp SYS_UBOOT /usr/mdec/rbootd # chmod -R a+rX /usr/mdec/rbootd Create /etc/rbootd.conf with the following line: CC:CC:CC:CC:CC:CC SYS_UBOOT You will need to start the rbootd. If it's already running, you will need to restart it to force it to re-read its configuration file. If the server is running NetBSD 1.5 or later, you can achieve this with: # /etc/rc.d/rbootd restart 3. dhcpd(8) The bootstrap program uses DHCP to discover the location of the ker- nel. Put the following lines in your /etc/dhcpd.conf (see dhcpd.conf(5) and dhcp-options(5) for more information): ddns-update-style none; # Do not use any dynamic DNS features # allow bootp; # Allow bootp requests, thus the dhcp server # will act as a bootp server. # authoritative; # master DHCP server for this subnet # subnet 192.168.1.0 netmask 255.255.255.0 { # Which network interface to listen on. # The zeros indicate the range of addresses # that are allowed to connect. } group { # Set of parameters common to all clients # in this "group". # option broadcast-address 192.168.1.255; option domain-name "test.net"; option domain-name-servers dns.test.net; option routers router.test.net; option subnet-mask 255.255.255.0; # # An individual client. # host client.test.net { hardware ethernet CC:CC:CC:CC:CC:CC; fixed-address 192.168.1.10; # # Name of the host (if the fixed address # doesn't resolve to a simple name). # option host-name "client"; # # The path on the NFS server. # option root-path "/export/client/root"; } #you may paste another "host" entry here for additional #clients on this network } You will need to make sure that the dhcpd.leases file exists. # touch /var/db/dhcpd.leases You will need to start the dhcpd. If it's already running, you will need to restart it to force it to re-read its configuration file. If the server is running NetBSD 1.5 or later, you can achieve this with: # /etc/rc.d/dhcpd restart 4. nfsd(8), mountd(8), and rpcbind(8) Now your system should be able to load the bootstrap program and start looking for the kernel. Let's set up the NFS server. Create the directory you are exporting for the netboot client: # mkdir -p /export/client/root Put the following line in /etc/exports to enable NFS sharing: /export/client/root -maproot=root client.test.net If your server is currently running an NFS server, you only need to restart mountd(8). Otherwise, you need to start rpcbind(8) and nfsd(8). If the server is running NetBSD 1.5 or later, you can achieve this with: # /etc/rc.d/rpcbind start # /etc/rc.d/nfsd start # /etc/rc.d/mountd restart 5. NetBSD kernel and installation tools Now, if you place a kernel named netbsd in /export/client/root your client should boot the kernel. If you are netbooting the installer, you can use either the traditional miniroot-based installer installation/miniroot/miniroot.fs.gz or the experimental RAM disk- based installer binary/kernel/netbsd.RAMDISK.gz. To use the miniroot-based installer, mount the miniroot file system on your netboot server. This procedure does not work on any operat- ing system other than NetBSD. You'll also need to either set up a new NFS share point or an FTP server for the distribution files, as they won't fit inside the miniroot file system. # gunzip miniroot.fs.gz # vnconfig -c /dev/vnd0c /path/to/miniroot.fs # mount -o ro /dev/vnd0c /export/client/root # ls /export/client/root .profile dist/ install.md mnt/ sbin/ usr/ bin/ etc/ install.sub mnt2/ tmp/ var/ dev/ install* kern/ netbsd* upgrade* If there are no files present in your exported directory, then some- thing is wrong. To use the RAM disk-based installer, uncompress and rename the ker- nel. Also, copy the distribution files to the client's root direc- tory. # cp *tgz /export/client/root # gunzip netbsd.RAMDISK.gz # mv netbsd.RAMDISK /export/client/root/netbsd If you are running your hp300 diskless, simply use binary/kernel/netbsd-GENERIC.gz. 6. Client file system You can skip this step if you do not plan to run your client disk- less after installation. Otherwise, you need to extract and set up the client's installation of NetBSD. The Diskless HOW-TO describes how to provide better security and save space on the NFS server over the procedure listed here. http://www.NetBSD.org/Documentation/network/netboot/nfs.html o Extracting distribution sets # cd /export/client/root # tar -xpzf /path/to/files/base.tgz # tar -xpzf /path/to/files/etc.tgz Continue with the other non-essential distribution sets if de- sired. o Set up swap # mkdir /export/client/root/swap # dd if=/dev/zero of=/export/client/swap bs=4k count=4k # echo '/export/client/swap -maproot=root:wheel client.test.net' cat >> # /etc/rc.d/mountd restart This creates a 16 MB swap file and exports it to the client. o Create device nodes # cd /export/client/root/dev # ./MAKEDEV all This procedure only works on NetBSD hosts. o Set up the client's fstab(5) Create a file in /export/client/root/etc/fstab with the follow- ing lines: server:/export/client/swap none swap sw,nfsmntpt=/swap server:/export/client/root / nfs rw 0 0 o Set up the client's rc.conf(5) Edit /export/client/root/etc/rc.conf rc_configured=YES hostname="client" defaultroute="192.168.1.1" nfs_client=YES auto_ifconfig=NO net_interfaces="" Make sure rc does not reconfigure the network device since it will lose its connection to the NFS server with your root file system. o Set up the client's hosts(5) file. Edit /export/client/root/etc/hosts ::1 localhost 127.0.0.1 localhost 192.168.1.10 client.test.net client 192.168.1.5 server.test.net server 7. Setting up the server daemons If you want these services to start up every time you boot your server, make sure the following lines are present in your /etc/rc.conf: rbootd=YES rbootd_flags="" dhcpd=YES dhcpd_flags="-q" nfs_server=YES # enable server daemons mountd=YES rpcbind=YES rpcbind_flags="-l" # -l logs libwrap Put Series 400 systems in HP-UX Compatible Boot Mode Series 400 systems can be configured to boot either HP-UX or DomainOS. To boot NetBSD/hp300 you must have your system configured in `HP-UX Compatible Boot Mode'. If, when you power on your machine, it does not present a menu like the following, then you need to change your configu- ration. Copyright 1990, Hewlett-Packard Company. All Rights Reserved. BOOTROM Series 400 Rev. 1.1 MD12 REV 1.2 1990/08/07.14:27:08 [...] 1. Attach a Domain keyboard or an HIL keyboard. The BootROM knows how to use either, even if NetBSD doesn't yet. 2. Put your system into `service mode'. For a 4XXs, there's a toggle switch on the back of the machine (near the top). For a 4XXt or 4XXdl, press the green button on the front, behind the silly door. For a 425e, there's a toggle switch on the back of the machine (in the middle). The second green LED should light up. 3. Reset the machine. Press the reset button. For a 4XXs, ther's a small plunger on the back of the machine (near the top). For a 4XXt or 4XXdl, there's a white button on the front, behind the silly door. For a 425e, there's a button on the back of the machine. 4. Press RETURN to get the Domain boot prompt (> ). You can type H to get a list of available commands. 5. Type the following sequence of commands to convert to `HP-UX Compatible Boot Mode'. > CF Type [key] RETURN ? 2 Type [key] RETURN ? 2 Type T or P RETURN ? P Type [key] RETURN ? E 6. Be sure to turn `service mode' off when you're done. It may prevent you from selecting which device to boot from. See the FAQ for additional help. http://www.netbsd.org/Ports/hp300/faq.html#domain Searching for a bootable system All the early hp300 Boot ROMs are very primitive and only allow a few simple operations. You can only interact with it after it is first pow- ered on. If you reboot the machine, it will ignore anything you type and start loading the same OS you previously booted. At any time after it recognizes the keyboard, while it is doing its self test or searching for a bootable system, you can hit reset to return it to a cold-boot configuration. On HIL keybaords, this is control-shift- break, where break is the key in the upper left (where escape is on sane keyboards). There is no equivalent over serial terminal, you'll need to power-cycle your machine. After it beeps (i.e. recognizes the HIL keyboard), press RETURN twice to get the list of bootable devices. SEARCHING FOR A SYSTEM (RETURN To Pause) The newer HP Boot ROM, present on Series 400 machines and some of the later 300s (345, 375, 380, 382, 385) is capable of a little bit more. To select which device to boot from, press RETURN once after it beeps twice (i.e. recognizes the HIL keyboard) to get the list of bootable devices. RESET To Power-Up, SPACE clears input Select System, type RETURN ? The FAQ lists additional things you can do with the BootROM and describes the order the BootROM looks for bootable devices. http://www.netbsd.org/Ports/hp300/faq.html A normal power-on sequence (from a 400s) looks something like this: Copyright 1990, Hewlett-Packard Company. All Rights Reserved. BOOTROM Series 400 Rev. 1.1 MD12 REV 1.2 1990/08/07.14:27:08 MC68030 Processor MC68882 Coprocessor Configuration EEPROM Utility Chip at 41 HP-HIL.Keyboard RESET To Power-Up Loading Memory Self-Test Mode RESET To Power-Up, SPACE clears input Select System, type RETURN HP-IB DMA-C0 Self-Test Mode RAM 33554158 Bytes HP98644 (RS-232) at 9 HP PARALLEL at 12 HP98265 (SCSI S 32) at 14 HP98643 (LAN) at 21, AUI, 080009115DB3 Bit Mapped Video at 133 (Console) System Search Mode :RODIME RO3000T, 1406, 0 1Z SYS_UBOOT :LAN080009115DB3, 2100, 0 2Z SYS_UBOOT :HP7959, 702, 0, 0 1H SYSHPUX 1D SYSDEBUG 1B SYSBCKUP :HP9122, 0700, 0, 0 3Z SYS_INST You should see your bootstrap program somewhere in this list. If it's not here, then your hp300 can't boot it and there's a problem somewhere. To boot from a particular device, type in the two character name for it and press RETURN. In this example, you'd type 2Z to boot from the net- work. Selecting ethernet port on Series 400 Series 400 machines have two ethernet media types built into the mother- board. You may only use one at a time. When your Series 400 workstation goes through the self-test when powered on or rebooted, it will say one of the following: HP98643 (LAN) at 21, AUI HP98643 (LAN) at 21, Thin If the wrong type of network is selected, you will need to change the ethernet port. You will need to open the case (4XXt, 4XXdl, 4XXe) or re- move the motherboard (4XXs) to access the jumper. Be sure to use static- prevention measures, as you could easily fry your motherboard from care- lessness. If you are uncomfortable with this, ask a friend who is aware of these issues. There is a block of 8 jumpers at the rear of the moth- erboard, labeled AUI/Thin. You will need to put the jumpers in the posi- tion necessary for your type of ethernet. Running SYS_INST This step is necessary only if you cannot netboot. Chose SYS_INST from the list of bootable devices that the BootROM found. SYS_INST will load and prompt you for a command. A quick note about disk numbers: While in the SYS_INST program, you may use different unit numbers for the disks than when the NetBSD kernel is running. The unit number for a disk while in SYS_INST is calculated with the following formula: unit = (controller * 8) + slaveID Controllers are numbered 0, 1, ... starting with the lowest select code. SCSI controllers and HP-IB controllers are counted separately. There- fore, if you had a system with an internal HP-IB interface at select code 7, a fast HP-IB interface at select code 14, and a SCSI interface at se- lect code 16, unit numbers might be something like the following: Location Unit HP-IB at 7, slaveID 2 2 (disk: rd2) HP-IB at 14, slaveID 5 13 (disk: rd13) SCSI at 16, slaveID 0 0 (disk: sd0) You will need to place a disklabel on the disk. sys_inst> disklabel Note: It may be worth selecting the zap option initially to ensure that the disklabel area is clear. This may be especially important if an HP-UX boot block had been previously installed on the disk. Select the edit option, and answer the questions about your disk. There may be several questions which you may not be sure of the answers to. Listed below are guidelines for SCSI and HP-IB disks: Bad sectoring? NO Ecc? NO Interleave? 1 Trackskew? 0 Cylinderskew? 0 Headswitch? 0 Track-to-track? 0 Drivedata 0-4? 0 (for all Drivedata values) Next, you will be asked to fill out the partition map. You must provide responses for all 8 partitions. Remember, you must have the sector off- set for the `b' partition match the location you dumped the miniroot file system image. Set the size and offset of any unused partition to 0. Note that sizes and offsets are expressed in `n sectors', assuming 512 byte sectors. Care should be taken to ensure that partitions begin and end on cylinder boundaries (i.e. size and offset is an even multiple of the number of sectors per cylinder). While this is not technically nec- essary, it is generally encouraged. Note: When setting the partition type of the `b' partition, make sure to specify it as an ffs partition so that the miniroot can be mounted (even if this will be a swap partition). You will be given a chance to clean this up later in the installation process. Once you have edited the label, select the show option to verify that it is correct. If so, select write and done. Otherwise, you may re-edit the label. In an earlier step, we already copied the miniroot image to the target disk. Boot from the miniroot file system. sys_inst> boot Enter the disk from which to boot. The kernel in the miniroot file sys- tem will be booted into single-user mode. Chosing a kernel location Once the bootstrap program SYS_UBOOT has started, it will pause and let you chose a kernel location, name, and options: >> NetBSD/hp300 Primary Boot, Revision 1.13 >> (gregm@mcgarry, Mon Apr 15 08:46:32 NZST 2002) >> HP 9000/425e SPU >> Enter "reset" to reset system. Boot: [[[le0a:]netbsd][-a][-c][-d][-s][-v][-q]] :- If your kernel is on a different device than SYS_UBOOT then you will need to type in where to find it. This is the case, for example, if your mod- el is incapable of netbooting and you started SYS_UBOOT from a floppy, and the miniroot installer is on a netboot server. In this case, you'd type in `le0' at the prompt. If you've installed the miniroot on your disk, you can always boot from that by using partition `b' when prompted by SYS_UBOOT. For example, to boot the miniroot from an HP-IB disk on controller 0 at slave ID 2, you'd type: Boot: [[[rd0a:]netbsd][-a][-c][-d][-s][-v][-q]] :- rd2b:netbsd Installing the NetBSD System The miniroot's install program is very simple to use. It will guide you through the entire process, and is well automated. If you need to restart the installer, hit Control-C which will return you to a shell prompt. From there, just start it over: # ./install The experimental RAM disk-based installer is not described here, but is very self-explanatory. The miniroot's install program will: 1. Allow you to place disklabels on additional disks. Note that parti- tion sizes and offsets are expressed in sectors. When you fill out the disklabel, you will need to specify partition types and file system parameters. If you're unsure what these values should be, use the following: fstype: 4.2BSD fsize: 1024 bsize: 4096 cpg: 16 If the partition will be a swap partition, use the following: fstype: swap fsize: 0 (or blank) bsize: 0 (or blank) cpg: 0 (or blank) You will also need to specify the number of partitions. The number of partitions is determined by the `index' of the last partition letter, where a = 1, b = 2, etc. Therefore, if the last filled par- tition is partition `g', there are 7 partitions. Any partitions with size of 0 may be removed from the list. Anything after a `#' is a comment. The following is an example disklabel partition map: 7 partitions: # size offset fstype [fsize bsize cpg] a: 30912 448 4.2BSD 1024 8192 16 # (Cyl. 1 - 69) b: 130816 31360 swap # (Cyl. 70 - 361) c: 1296512 0 boot # (Cyl. 0 - 2893) e: 81984 162176 4.2BSD 1024 8192 16 # (Cyl. 362 - 544) f: 102592 244160 4.2BSD 1024 4096 16 # (Cyl. 545 - 773) g: 949760 346752 4.2BSD 1024 8192 16 # (Cyl. 774 - 2893) 2. Create file systems on target partitions. 3. Allow you to set up your system's network configuration. Remember to specify host names without the domain name appended to the end. For example use foo instead of foo.bar.org. If, during the process of configuring the network interfaces, you make a mistake, you will be able to re-configure that interface by simply selecting it for configuration again. 4. Mount target file systems. You will be given the opportunity to manually edit the resulting /etc/fstab. 5. Extract binary sets from the media of your choice. 6. Copy configuration information gathered during the installation pro- cess to your root file system (/). 7. Make device nodes in your root file system under /dev. 8. Copy a new kernel onto your root partition (/). 9. Install a new boot block. 10. Check your file systems for integrity. First-time installation on a system through a method other than the in- stallation program is possible, but strongly discouraged. Post installation steps Once you've got the operating system running, there are a few things you need to do in order to bring the system into a properly configured state, with the most important ones described below. 1. Configuring /etc/rc.conf If you or the installation software haven't done any configuration of /etc/rc.conf (sysinst usually will), the system will drop you in- to single user mode on first reboot with the message /etc/rc.conf is not configured. Multiuser boot aborted. and with the root file system (/) mounted read-only. When the sys- tem asks you to choose a shell, simply press RETURN to get to a /bin/sh prompt. If you are asked for a terminal type, respond with hp300h for a local console, or whatever is appropriate for your se- rial console. and press RETURN. You may need to type one of the following commands to get your delete key to work properly, depend- ing on your keyboard: # stty erase '^h' # stty erase '^?' At this point, you need to configure at least one file in the /etc directory. You will need to mount your root file system read/write with: # /sbin/mount -u -w / Change to the /etc directory and take a look at the /etc/rc.conf file. Modify it to your tastes, making sure that you set rc_configured=YES so that your changes will be enabled and a multi- user boot can proceed. Default values for the various programs can be found in /etc/defaults/rc.conf, where some in-line documentation may be found. More complete documentation can be found in rc.conf(5). If your /usr directory is on a separate partition and you do not know how to use ed, you will have to mount your /usr partition to gain access to ex or vi. Do the following: # mount /usr # export TERM=hp300h If you have /var on a separate partition, you need to repeat that step for it. After that, you can edit /etc/rc.conf with vi(1). When you have finished, type exit at the prompt to leave the single- user shell and continue with the multi-user boot. Other values that need to be set in /etc/rc.conf for a networked en- vironment are hostname and possibly defaultroute, furthermore add an ifconfig_int for your network interface, along the lines of ifconfig_le0="inet 123.45.67.89 netmask 255.255.255.0" or, if you have myname.my.dom in /etc/hosts: ifconfig_le0="inet myname.my.dom netmask 255.255.255.0" To enable proper hostname resolution, you will also want to add an /etc/resolv.conf file or (if you are feeling a little more adventur- ous) run named(8). See resolv.conf(5) or named(8) for more informa- tion. Other files in /etc that may require modification or setting up in- clude /etc/mailer.conf, /etc/nsswitch.conf, and /etc/wscons.conf. 2. Logging in After reboot, you can log in as root at the login prompt. Unless you've set a password in sysinst, there is no initial password. If you're using the machine in a networked environment, you should cre- ate an account for yourself (see below) and protect it and the ``root'' account with good passwords. Unless you have connected an unusual terminal device as the console you can just press RETURN when it prompts for Terminal type? [...]. 3. Adding accounts Use the useradd(8) command to add accounts to your system; do not edit /etc/passwd directly. See useradd(8) for more information on how to add a new user to the system. 4. The X Window System If you have installed the X Window System, look at the files in /usr/X11R6/lib/X11/doc for information. Also, you may want to read through the NetBSD/hp300 FAQ entry on X11. http://www.NetBSD.org/Ports/faq.html#x11 Don't forget to add /usr/X11R6/bin to your path in your shell's dot file so that you have access to the X binaries. 5. Installing third party packages If you wish to install any of the software freely available for UNIX-like systems you are strongly advised to first check the NetBSD package system. This automatically handles any changes necessary to make the software run on NetBSD, retrieval and installation of any other packages on which the software may depend, and simplifies in- stallation (and deinstallation), both from source and precompiled binaries. o More information on the package system is at http://www.NetBSD.org/Documentation/software/packages.html o A list of available packages suitable for browsing is at ftp://ftp.NetBSD.org/pub/NetBSD/packages/pkgsrc/README.html o Precompiled binaries can be found at ftp://ftp.NetBSD.org/pub/NetBSD/packages, usually in the 1.6.2/hp300/All subdir. You can install them with the following commands: # PKG_PATH=ftp://ftp.NetBSD.org/pub/NetBSD/packages/1.6.2/hp300/All # export PKG_PATH # pkg_add -v tcsh # pkg_add -v apache # pkg_add -v perl ... The above commands will install the tcsh shell, the Apache web server and the perl programming language as well as all the packages they depend on. o Package sources for compiling packages on your own can be ob- tained by retrieving the file ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD- current/tar_files/pkgsrc.tar.gz They are typically extracted into /usr/pkgsrc (though other lo- cations work fine), with the commands: # mkdir /usr/pkgsrc # ( cd /usr/pkgsrc ; tar -zxpf - ) < pkgsrc.tar.gz After extracting, then see the README file in the extraction di- rectory (e.g. /usr/pkgsrc/README) for more information. 6. Misc o Edit /etc/mail/aliases to forward root mail to the right place. Don't forget to run newaliases(1) afterwards. o The /etc/mail/sendmail.cf file will almost definitely need to be adjusted; files aiding in this can be found in /usr/share/sendmail. See the README file there for more infor- mation. o Edit /etc/rc.local to run any local daemons you use. o Many of the /etc files are documented in section 5 of the manu- al; so just invoking # man 5 filename is likely to give you more information on these files. Upgrading a previously-installed NetBSD System It is possible to easily upgrade your existing NetBSD/hp300 system using the upgrade program in the miniroot or by manually performing the same steps as the miniroot upgrade program. Upgrading using the miniroot If you wish to upgrade your system by this method, simply select the upgrade option once the miniroot has booted. The upgrade program with then guide you through the procedure. While you can boot the miniroot using the same methods described above for a fresh install of NetBSD/hp300 there are easier and less intrusive options since your disk is already labeled and bootable. The easiest is to dump the miniroot to your swap partition and boot from that. 1. Download the files you'll need to upgrade In particular, make sure you have on your locally mounted file sys- tems base.tgz and miniroot.fs.gz 2. Boot your hp300 into `single-user mode': Follow the instructions in the section above on Chosing a kernel location and type -s at the prompt. 3. Extract and install a new boot block: Make sure you install the bootstrap program distributed with this version of NetBSD/hp300. # tar -xpvzf base.tgz ./usr/mdec # disklabel -B -b ./usr/mdec/uboot.lif root-disk E.g.: root-disk could be sd0 or rd0. We'll assume rd0 for now. 4. Install the miniroot file system: First make sure that your `b' partition has enough room for the un- compressed miniroot (otherwise it might overwrite another partition or the end of the disk). # gunzip miniroot.fs.gz # dd if=miniroot.fs of=/dev/rd0b 5. Boot the miniroot: Follow the instructions in the section above on Chosing a kernel location and type rd0b:netbsd at the prompt. The upgrade program will: 1. Enable the network based on your system's current network configura- tion. 2. Mount your existing file systems. 3. Extract binary sets from the media of your choice. 4. Fixup your system's existing /etc/fstab, changing the occurrences of ufs to ffs and let you edit the resulting file. 5. Make new device nodes in your root file system under /dev. 6. Don't forget to extract the kern set from the distribution. Note: The existing kernel will not be backed up; doing so would be pointless, since older kernels may not be capable of running NetBSD 1.6.2executables. 7. Install a new boot block. 8. Check your file systems for integrity. 9. You'll have to reboot your system manually Manual upgrade While using the miniroot's upgrade program is the preferred method of up- grading your system, it is possible to upgrade your system manually. To do this, follow the following procedure: 1. Place at least the base binary set in a file system accessible to the target machine. A local file system is preferred, since the NFS subsystem in the NetBSD 1.6.2 kernel may be incompatible with your old binaries. 2. Back up your pre-existing kernel and copy the 1.6.2 kernel into your root partition (/). 3. Extract and install a new boot block: Make sure you install the bootstrap program distributed with this version of NetBSD/hp300. # tar -xpvzf base.tgz ./usr/mdec # disklabel -B -b ./usr/mdec/uboot.lif root-disk E.g.: root-disk could be sd0 or rd0. 4. Reboot with the 1.6.2 kernel into single-user mode. 5. Check all file systems: # /sbin/fsck -pf 6. Mount all local file systems: # /sbin/mount -a -t nonfs 7. If you keep /usr or /usr/share on an NFS server, you will want to mount those file systems as well. To do this, you will need to en- able the network: # sh /etc/rc.d/network start 8. Make sure you are in the root file system (/) and extract the base binary set: # cd / # pax -zrvpe -f /path/to/base.tgz 9. Sync the file systems: # sync 10. At this point you may extract any other binary sets you may have placed on local file systems, or you may wish to extract additional sets at a later time. To extract these sets, use the following com- mands: # cd / # pax -zrvpe -f path_to_set Note: You should not extract the etc set if upgrading. Instead, you should extract that set into another area and carefully merge the changes by hand. Compatibility Issues With Previous NetBSD Releases Users upgrading from previous versions of NetBSD may wish to bear the following problems and compatibility issues in mind when upgrading to NetBSD 1.6.2. Issues affecting an upgrade from NetBSD 1.5 The following issues can generally be resolved by extracting the etc set into a temporary directory and running postinstall: mkdir /tmp/upgrade cd /tmp/upgrade pax -zrpe -f /path/to/etc.tgz ./etc/postinstall -s `pwd` check ./etc/postinstall -s `pwd` fix Issues fixed by postinstall: o Various files in /etc need upgrading. These include: - /etc/defaults/* - /etc/mtree/* - /etc/daily - /etc/weekly - /etc/monthly - /etc/security - /etc/rc.subr - /etc/rc - /etc/rc.shutdown - /etc/rc.d/* o The following files are now obsolete: /etc/rc.d/NETWORK and /etc/rc.d/gated. o The following rc.conf(5) entries are now obsolete: amd_master, ip6forwarding, defcorename, and nfsiod_flags. critical_filesystems_beforenet has been replaced by critical_filesystems_local. critical_filesystems has been re- placed by critical_filesystems_remote. o The users and groups `named', `ntpd', and `sshd' need to be created. o The configuration files for ssh(1) and sshd(8) were moved from /etc to /etc/ssh, including ssh_known_hosts* files and the host key files ssh_host*_key*. /etc/ssh.conf was renamed to /etc/ssh/ssh_config, and /etc/sshd.conf was renamed to /etc/ssh/sshd_config. o The mux entries in wscons.conf(5) are now obsolete. The following issues need to be resolved manually: o postfix(8) configuration files require upgrading. cd /usr/share/examples/postfix cp post-install postfix-files postfix-script /etc/postfix postfix check o The de ethernet driver was replaced with the tlp driver. This may require the renaming of the files /etc/ifconfig.de* to /etc/ifconfig.tlp*, renaming of rc.conf(5) entries ifconfig_de* to ifconfig_tlp*, and the reconfiguration of files such as /etc/dhclient.conf and /etc/ipf.conf. Issues affecting an upgrade from NetBSD 1.4 or prior o /etc/rc modified to use /etc/rc.d/* Prior to NetBSD 1.5, /etc/rc was a traditional BSD style monolithic file; each discrete program or substem from /etc/rc and /etc/netstart has been moved into separate scripts in /etc/rc.d/. At system startup, /etc/rc uses rcorder(8) to build a dependency list of the files in /etc/rc.d and then executes each script in turn with an argument of `start'. Many rc.d scripts won't start unless the ap- propriate rc.conf(5) entry in /etc/rc.conf is set to `YES.' At system shutdown, /etc/rc.shutdown uses rcorder(8) to build a de- pendency list of the files in /etc/rc.d that have a ``KEYWORD: shutdown'' line, reverses the resulting list, and then executes each script in turn with an argument of `stop'. The following scripts support a specific shutdown method: cron, inetd, local, and xdm. Local and third-party scripts may be installed into /etc/rc.d as nec- essary. Refer to the other scripts in that directory and rc(8) for more information on implementing rc.d scripts. o named(8) leaks version information. Previous releases of NetBSD disabled a feature of named(8) where the version number of the server could be determined by remote clients. This feature has not been disabled in NetBSD 1.5, because there is a named.conf(5) option to change the version string: option { version "newstring"; }; o sysctl(8) was moved from /usr/sbin/sysctl to /sbin/sysctl. If you have hardcoded references to the full pathname (in shell scripts, for example) please be sure to update those. o sendmail(8) configuration file pathname changed. Due to sendmail(8) upgrade from 8.9.x to 8.10.x, /etc/sendmail.cf is moved to /etc/mail/sendmail.cf. Also, the default sendmail.cf(5) refers different pathnames than before. For example, /etc/aliases is now located at /etc/mail/aliases, /etc/sendmail.cw is now called /etc/mail/local-host-names, and so forth. If you have customized sendmail.cf(5) and friends, you will need to move the files to the new locations. See /usr/share/sendmail/README for more information. Using online NetBSD documentation Documentation is available if you first install the manual distribution set. Traditionally, the ``man pages'' (documentation) are denoted by `name(section)'. Some examples of this are o intro(1), o man(1), o apropros(1), o passwd(1), and o passwd(5). The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8. The man command is used to view the documentation on a topic, and is started by entering man [section] topic. The brackets [] around the sec- tion should not be entered, but rather indicate that the section is op- tional. If you don't ask for a particular section, the topic with the lowest numbered section name will be displayed. For instance, after log- ging in, enter # man passwd to read the documentation for passwd(1). To view the documentation for passwd(5), enter # man 5 passwd instead. If you are unsure of what man page you are looking for, enter apropos subject-word where subject-word is your topic of interest; a list of possibly related man pages will be displayed. Administrivia If you've got something to say, do so! We'd like your input. There are various mailing lists available via the mailing list server at majordomo@netbsd.org. To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instruc- tions. There are various mailing lists set up to deal with comments and ques- tions about this release. Please send comments to: netbsd- comments@netbsd.org. To report bugs, use the send-pr(1) command shipped with NetBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details. Additionally, bug reports can be sent by mail to: netbsd-bugs@netbsd.org. Use of send-pr(1) is encouraged, however, because bugs reported with it are entered into the NetBSD bugs database, and thus can't slip through the cracks. There are also port-specific mailing lists, to discuss aspects of each port of NetBSD. Use majordomo to find their addresses, or visit http://www.netbsd.org/MailingLists/. If you're interested in doing a serious amount of work on a specific port, you probably should contact the `owner' of that port (listed be- low). If you'd like to help with this effort, and have an idea as to how you could be useful, send us mail or subscribe to: netbsd-help@netbsd.org. As a favor, please avoid mailing huge documents or files to these mailing lists. Instead, put the material you would have sent up for FTP or WWW somewhere, then mail the appropriate list about it, or, if you'd rather not do that, mail the list saying you'll send the data to those who want it. Thanks go to o The former members of UCB's Computer Systems Research Group, includ- ing (but not limited to): Keith Bostic Ralph Campbell Mike Karels Marshall Kirk McKusick for their ongoing work on BSD systems, support, and encouragement. o Also, our thanks go to: Mike Hibler Rick Macklem Jan-Simon Pendry Chris Torek for answering lots of questions, fixing bugs, and doing the various work they've done. o UC Berkeley's Experimental Computing Facility provided a home for sun-lamp in the past, people to look after it, and a sense of humor. Rob Robertson, too, has added his unique sense of humor to things, and for a long time provided the primary FTP site for NetBSD. o Vixie Enterprises for hosting the NetBSD FTP, SUP, and WWW servers. o Redback Networks, Inc. for hosting the NetBSD mail and GNATS server. o The Helsinki University of Technology in Finland for hosting the NetBSD CVS server. o The Internet Research Institute in Japan for hosting the server which runs the CVSweb interface to the NetBSD source tree. o The many organisations that provide NetBSD mirror sites. o Without CVS, this project would be impossible to manage, so our hats go off to Brian Berliner, Jeff Polk, and the various other people who've had a hand in making CVS a useful tool. o Dave Burgess burgess@cynjut.infonet.net has been maintaining the 386BSD/NetBSD/FreeBSD FAQ for quite some time, and deserves to be recognized for it. o The following individuals and organizations (each in alphabetical or- der) have made donations or loans of hardware and/or money, to sup- port NetBSD development, and deserve credit for it: Steve Allen Jason Birnschein Mason Loring Bliss Jason Brazile Mark Brinicombe David Brownlee Simon Burge Dave Burgess Ralph Campbell Brian Carlstrom James Chacon Bill Coldwell Charles Conn Tom Coulter Charles D. Cranor Christopher G. Demetriou Scott Ellis Hubert Feyrer Castor Fu Greg Gingerich William Gnadt Michael Graff Guenther Grau Ross Harvey Charles M. Hannum Michael L. Hitch Kenneth Alan Hornstein Jordan K. Hubbard Soren Jorvang Scott Kaplan Noah M. Keiserman Harald Koerfgen John Kohl Chris Legrow Ted Lemon Norman R. McBride Neil J. McRae Perry E. Metzger Luke Mewburn Toru Nishimura Herb Peyerl Mike Price Dave Rand Michael Richardson Heiko W. Rupp Brad Salai Chuck Silvers Thor Lancelot Simon Bill Sommerfeld Paul Southworth Eric and Rosemary Spahr Ted Spradley Kimmo Suominen Jason R. Thorpe Steve Wadlow Krister Walfridsson Rob Windsor Jim Wise Reinoud Zandijk Christos Zoulas AboveNet Communications, Inc. Advanced System Products, Inc. Avalon Computer Systems Bay Area Internet Solutions Brains Corporation, Japan Canada Connect Corporation Co-operative Research Centre for Enterprise Distributed Systems Technology Demon Internet, UK Digital Equipment Corporation Distributed Processing Technology Easynet, UK Free Hardware Foundation Innovation Development Enterprises of America Internet Software Consortium MS Macro System GmbH, Germany Numerical Aerospace Simulation Facility, NASA Ames Research Center Piermont Information Systems Inc. Precedence Technologies Ltd Salient Systems Inc. VMC Harald Frank, Germany Warped Communications, Inc. Whitecross Database Systems Ltd. (If you're not on that list and should be, tell us! We probably were not able to get in touch with you, to verify that you wanted to be listed.) o Finally, we thank all of the people who've put sweat and tears into developing NetBSD since its inception in January, 1993. (Obviously, there are a lot more people who deserve thanks here. If you're one of them, and would like to mentioned, tell us!) We are... (in alphabetical order) The NetBSD core group: Jun-ichiro itojun Hagino itojun@netbsd.org Frank van der Linden fvdl@netbsd.org Luke Mewburn lukem@netbsd.org Christos Zoulas christos@netbsd.org The portmasters (and their ports): Simon Burge simonb@netbsd.org pmax Simon Burge simonb@netbsd.org sbmips Jeremy Cooper jeremy@netbsd.org sun3x Matt Fredette fredette@netbsd.org sun2 Chris Gilbert chris@netbsd.org cats Ross Harvey ross@netbsd.org alpha Jun-ichiro itojun Hagino itojun@netbsd.org sh3 Ben Harris bjh21@netbsd.org acorn26 Eduardo Horvath eeh@netbsd.org sparc64 Darrin Jewell dbj@netbsd.org next68k Soren Jorvang soren@netbsd.org cobalt Soren Jorvang soren@netbsd.org sgimips Wayne Knowles wdk@netbsd.org mipsco Paul Kranenburg pk@netbsd.org sparc Frank van der Linden fvdl@netbsd.org i386 Anders Magnusson ragge@netbsd.org vax Phil Nelson phil@netbsd.org pc532 NISHIMURA Takeshi nsmrtks@netbsd.org x68k Tohru Nishimura nisimura@netbsd.org luna68k NONAKA Kimihiro nonaka@netbsd.org prep Scott Reynolds scottr@netbsd.org mac68k Kazuki Sakamoto sakamoto@netbsd.org bebox Noriyuki Soda soda@netbsd.org arc Wolfgang Solfrank ws@netbsd.org ofppc Ignatios Souvatzis is@netbsd.org amiga Jonathan Stone jonathan@netbsd.org pmax Shin Takemura takemura@netbsd.org hpcmips Jason Thorpe thorpej@netbsd.org alpha Jason Thorpe thorpej@netbsd.org hp300 Tsubai Masanari tsubai@netbsd.org macppc Tsubai Masanari tsubai@netbsd.org newsmips Izumi Tsutsui tsutsui@netbsd.org news68k Leo Weppelman leo@netbsd.org atari Nathan Williams nathanw@netbsd.org sun3 Steve Woodford scw@netbsd.org mvme68k Steve Woodford scw@netbsd.org mvmeppc Reinoud Zandijk reinoud@netbsd.org acorn32 The NetBSD 1.6.2 Release Engineering team: Erik Berls cyber@netbsd.org Havard Eidnes he@netbsd.org Perry Metzger perry@netbsd.org Luke Mewburn lukem@netbsd.org Jason Thorpe thorpej@netbsd.org Todd Vierling tv@netbsd.org NetBSD Developers: Nathan Ahlstrom nra@netbsd.org Steve Allen wormey@netbsd.org Julian Assange proff@netbsd.org Lennart Augustsson augustss@netbsd.org Christoph Badura bad@netbsd.org Bang Jun-Young junyoung@netbsd.org Dieter Baron dillo@netbsd.org Robert V. Baron rvb@netbsd.org Jason Beegan jtb@netbsd.org Erik Berls cyber@netbsd.org Hiroyuki Bessho bsh@netbsd.org John Birrell jb@netbsd.org Mason Loring Bliss mason@netbsd.org Rafal Boni rafal@netbsd.org Manuel Bouyer bouyer@netbsd.org John Brezak brezak@netbsd.org Allen Briggs briggs@netbsd.org Mark Brinicombe mark@netbsd.org Aaron Brown abrown@netbsd.org Andrew Brown atatat@netbsd.org David Brownlee abs@netbsd.org Frederick Bruckman fredb@netbsd.org Jon Buller jonb@netbsd.org Simon Burge simonb@netbsd.org Robert Byrnes byrnes@netbsd.org D'Arcy J.M. Cain darcy@netbsd.org Dave Carrel carrel@netbsd.org James Chacon jmc@netbsd.org Bill Coldwell billc@netbsd.org Julian Coleman jdc@netbsd.org Jeremy Cooper jeremy@netbsd.org Chuck Cranor chuck@netbsd.org Alistair Crooks agc@netbsd.org Aidan Cully aidan@netbsd.org Johan Danielsson joda@netbsd.org Matt DeBergalis deberg@netbsd.org Rob Deker deker@netbsd.org Chris G. Demetriou cgd@netbsd.org Tracy Di Marco White gendalia@netbsd.org Jaromir Dolecek jdolecek@netbsd.org Andy Doran ad@netbsd.org Roland Dowdeswell elric@netbsd.org Emmanuel Dreyfus manu@netbsd.org Matthias Drochner drochner@netbsd.org Jun Ebihara jun@netbsd.org Havard Eidnes he@netbsd.org Stoned Elipot seb@netbsd.org Enami Tsugutomo enami@netbsd.org Bernd Ernesti veego@netbsd.org Erik Fair fair@netbsd.org Gavan Fantom gavan@netbsd.org Hubert Feyrer hubertf@netbsd.org Jason R. Fink jrf@netbsd.org Matt Fredette fredette@netbsd.org Thorsten Frueauf frueauf@netbsd.org Castor Fu castor@netbsd.org Ichiro Fukuhara ichiro@netbsd.org Thomas Gerner thomas@netbsd.org Simon J. Gerraty sjg@netbsd.org Justin Gibbs gibbs@netbsd.org Chris Gilbert chris@netbsd.org Adam Glass glass@netbsd.org Michael Graff explorer@netbsd.org Brian C. Grayson bgrayson@netbsd.org Matthew Green mrg@netbsd.org Andreas Gustafsson gson@netbsd.org Jun-ichiro itojun Hagino itojun@netbsd.org Juergen Hannken-Illjes hannken@netbsd.org Charles M. Hannum mycroft@netbsd.org Ben Harris bjh21@netbsd.org Ross Harvey ross@netbsd.org Eric Haszlakiewicz erh@netbsd.org John Hawkinson jhawk@netbsd.org HAYAKAWA Koichi haya@netbsd.org Rene Hexel rh@netbsd.org Michael L. Hitch mhitch@netbsd.org Christian E. Hopps chopps@netbsd.org Ken Hornstein kenh@netbsd.org Marc Horowitz marc@netbsd.org Eduardo Horvath eeh@netbsd.org Nick Hudson skrll@netbsd.org Shell Hung shell@netbsd.org Martin Husemann martin@netbsd.org Dean Huxley dean@netbsd.org Bernardo Innocenti bernie@netbsd.org Tetsuya Isaki isaki@netbsd.org ITOH Yasufumi itohy@netbsd.org IWAMOTO Toshihiro toshii@netbsd.org Matthew Jacob mjacob@netbsd.org Lonhyn T. Jasinskyj lonhyn@netbsd.org Darrin Jewell dbj@netbsd.org Chris Jones cjones@netbsd.org Soren Jorvang soren@netbsd.org Takahiro Kambe taca@netbsd.org Antti Kantee pooka@netbsd.org Masanori Kanaoka kanaoka@netbsd.org Mattias Karlsson keihan@netbsd.org KAWAMOTO Yosihisa kawamoto@netbsd.org Mario Kemper magick@netbsd.org Thomas Klausner wiz@netbsd.org Klaus Klein kleink@netbsd.org Wayne Knowles wdk@netbsd.org John Kohl jtk@netbsd.org Paul Kranenburg pk@netbsd.org Martti Kuparinen martti@netbsd.org Kevin Lahey kml@netbsd.org Johnny C. Lam jlam@netbsd.org Martin J. Laubach mjl@netbsd.org Ted Lemon mellon@netbsd.org Frank van der Linden fvdl@netbsd.org Joel Lindholm joel@netbsd.org Mike Long mikel@netbsd.org Warner Losh imp@netbsd.org Tomasz Luchowski zuntum@netbsd.org Federico Lupi federico@netbsd.org Brett Lymn blymn@netbsd.org Paul Mackerras paulus@netbsd.org Anders Magnusson ragge@netbsd.org MAEKAWA Masahide gehenna@netbsd.org David Maxwell david@netbsd.org Dan McMahill dmcmahill@netbsd.org Gregory McGarry gmcgarry@netbsd.org Jared D. McNeill jmcneill@netbsd.org Neil J. McRae neil@netbsd.org Perry Metzger perry@netbsd.org Minoura Makoto minoura@netbsd.org Luke Mewburn lukem@netbsd.org der Mouse mouse@netbsd.org Joseph Myers jsm@netbsd.org Ken Nakata kenn@netbsd.org Phil Nelson phil@netbsd.org Bob Nestor rnestor@netbsd.org NISHIMURA Takeshi nsmrtks@netbsd.org Tohru Nishimura nisimura@netbsd.org NONAKA Kimihiro nonaka@netbsd.org Jesse Off joff@netbsd.org Tatoku Ogaito tacha@netbsd.org Masaru Oki oki@netbsd.org Atsushi Onoe onoe@netbsd.org Greg Oster oster@netbsd.org Herb Peyerl hpeyerl@netbsd.org Matthias Pfaller matthias@netbsd.org Chris Pinnock cjep@netbsd.org Dante Profeta dante@netbsd.org Chris Provenzano proven@netbsd.org Michael Rauch mrauch@netbsd.org Darren Reed darrenr@netbsd.org Scott Reynolds scottr@netbsd.org Michael Richardson mcr@netbsd.org Tim Rightnour garbled@netbsd.org Gordon Ross gwr@netbsd.org Heiko W. Rupp hwr@netbsd.org David Sainty dsainty@netbsd.org SAITOH Masanobu msaitoh@netbsd.org Kazuki Sakamoto sakamoto@netbsd.org Curt Sampson cjs@netbsd.org Wilfredo Sanchez wsanchez@netbsd.org Ty Sarna tsarna@netbsd.org SATO Kazumi sato@netbsd.org Jan Schaumann jschauma@netbsd.org Matthias Scheler tron@netbsd.org Karl Schilke (rAT) rat@netbsd.org Amitai Schlair schmonz@netbsd.org Konrad Schroder perseant@netbsd.org Reed Shadgett dent@netbsd.org Tim Shepard shep@netbsd.org Takeshi Shibagaki shiba@netbsd.org Takao Shinohara shin@netbsd.org Takuya SHIOZAKI tshiozak@netbsd.org Chuck Silvers chs@netbsd.org Thor Lancelot Simon tls@netbsd.org Jeff Smith jeffs@netbsd.org Noriyuki Soda soda@netbsd.org Wolfgang Solfrank ws@netbsd.org SOMEYA Yoshihiko someya@netbsd.org Bill Sommerfeld sommerfeld@netbsd.org Ignatios Souvatzis is@netbsd.org Bill Squier groo@netbsd.org Jonathan Stone jonathan@netbsd.org Bill Studenmund wrstuden@netbsd.org Kevin Sullivan sullivan@netbsd.org SUNAGAWA Keiki kei@netbsd.org Kimmo Suominen kim@netbsd.org Shin Takemura takemura@netbsd.org TAMURA Kent kent@netbsd.org Shin'ichiro TAYA taya@netbsd.org Matt Thomas matt@netbsd.org Jason Thorpe thorpej@netbsd.org Christoph Toshok toshok@netbsd.org Tsubai Masanari tsubai@netbsd.org Izumi Tsutsui tsutsui@netbsd.org UCHIYAMA Yasushi uch@netbsd.org Masao Uebayashi uebayasi@netbsd.org Shuichiro URATA ur@netbsd.org Todd Vierling tv@netbsd.org Aymeric Vincent aymeric@netbsd.org Paul Vixie vixie@netbsd.org Krister Walfridsson kristerw@netbsd.org Lex Wennmacher wennmach@netbsd.org Leo Weppelman leo@netbsd.org Assar Westerlund assar@netbsd.org Todd Whitesel toddpw@netbsd.org Nathan Williams nathanw@netbsd.org Rob Windsor windsor@netbsd.org Dan Winship danw@netbsd.org Jim Wise jwise@netbsd.org Michael Wolfson mbw@netbsd.org Steve Woodford scw@netbsd.org Colin Wood ender@netbsd.org YAMAMOTO Takashi yamt@netbsd.org Yuji Yamano yyamano@netbsd.org Reinoud Zandijk reinoud@netbsd.org Maria Zevenhoven maria7@netbsd.org Christos Zoulas christos@netbsd.org Other contributors: Dave Burgess burgess@cynjut.infonet.net Brian R. Gaeke brg@dgate.org Brad Grantham grantham@tenon.com Lawrence Kesteloot kesteloo@cs.unc.edu Waldi Ravens waldi@moacs.indiv.nl.net Legal Mumbo-Jumbo All product names mentioned herein are trademarks or registered trade- marks of their respective owners. The following notices are required to satisfy the license terms of the software that we have mentioned in this document: This product includes software developed by the University of California, Berkeley and its contributors. This product includes software developed by The NetBSD Foundation, Inc. This product includes software developed by the NetBSD Foundation, Inc. and its contributors. This product includes software developed by the Computer Systems Engi- neering Group at Lawrence Berkeley Laboratory. This product includes software developed by Adam Glass and Charles Han- num. This product includes software developed by Adam Glass and Charles M. Hannum. This product includes software developed by Adam Glass. This product includes software developed by Alistair G. Crooks. This product includes software developed by Amancio Hasty and Roger Hardiman. This product includes software developed by Berkeley Software Design, Inc. This product includes software developed by Bill Paul. This product includes software developed by Charles D. Cranor and Wash- ington University. This product includes software developed by Charles D. Cranor. This product includes software developed by Charles Hannum, by the Uni- versity of Vermont and State Agricultural College and Garrett A. Wollman, by William F. Jolitz, and by the University of California, Berkeley, Lawrence Berkeley Laboratory, and its contributors. This product includes software developed by Charles Hannum. This product includes software developed by Charles M. Hannum. This product includes software developed by Chris Provenzano. This product includes software developed by Christian E. Hopps. This product includes software developed by Christopher G. Demetriou for the NetBSD Project. This product includes software developed by Christopher G. Demetriou. This product includes software developed by Christos Zoulas. This product includes software developed by David Jones and Gordon Ross. This product includes software developed by Dean Huxley. This product includes software developed by Eric S. Hvozda. This product includes software developed by Ezra Story. This product includes software developed by Gardner Buchanan. This product includes software developed by Gordon Ross. This product includes software developed by Gordon W. Ross and Leo Wep- pelman. This product includes software developed by Gordon W. Ross. This product includes software developed by Hauke Fath. This product includes software developed by HAYAKAWA Koichi. This product includes software developed by Hellmuth Michaelis and Joerg Wunsch. This product includes software developed by Herb Peyerl. This product includes software developed by Holger Veit and Brian Moore for use with "386BSD" and similar operating systems. This product includes software developed by Hubert Feyrer for the NetBSD Project. This product includes software developed by Iain Hibbert. This product includes software developed by Ian W. Dall. This product includes software developed by Ignatios Souvatzis for the NetBSD Project. This product includes software developed by Jason R. Thorpe for And Com- munications, http://www.and.com/. This product includes software developed by Joachim Koenig-Baltes. This product includes software developed by Jochen Pohl for The NetBSD Project. This product includes software developed by John Polstra. This product includes software developed by Jonathan Stone and Jason R. Thorpe for the NetBSD Project. This product includes software developed by Jonathan Stone for the NetBSD Project. This product includes software developed by Jonathan Stone. This product includes software developed by Julian Highfield. This product includes software developed by Kenneth Stailey. This product includes software developed by Leo Weppelman. This product includes software developed by Lloyd Parkes. This product includes software developed by Manuel Bouyer. This product includes software developed by Marc Horowitz. This product includes software developed by Mark Brinicombe for the NetB- SD Project. This product includes software developed by Mark Brinicombe. This product includes software developed by Mark Tinguely and Jim Lowe. This product includes software developed by Markus Wild. This product includes software developed by Martin Husemann and Wolfgang Solfrank. This product includes software developed by Mats O Jansson and Charles D. Cranor. This product includes software developed by Mats O Jansson. This product includes software developed by Matthias Pfaller. This product includes software developed by Michael L. Hitch. This product includes software developed by Niels Provos. This product includes software developed by Paul Kranenburg. This product includes software developed by Paul Mackerras. This product includes software developed by Peter Galbavy. This product includes software developed by Philip A. Nelson. This product includes software developed by Rodney W. Grimes. This product includes software developed by Roland C. Dowdeswell. This product includes software developed by Rolf Grossmann. This product includes software developed by Scott Bartram. This product includes software developed by SigmaSoft, Th. Lockert. This product includes software developed by Tatoku Ogaito for the NetBSD Project. This product includes software developed by Terrence R. Lambert. This product includes software developed by Theo de Raadt and John Brezak. This product includes software developed by Theo de Raadt. This product includes software developed by Tohru Nishimura for the NetB- SD Project. This product includes software developed by TooLs GmbH. This product includes software designed by William Allen Simpson. This product includes software developed by Winning Strategies, Inc. This product includes software developed by Zembu Labs, Inc. This product includes software developed by the Center for Software Sci- ence at the University of Utah. This product includes software developed by the Computer Systems Labora- tory at the University of Utah. This product includes software developed by the University of Calgary De- partment of Computer Science and its contributors. This product includes software developed by the University of Vermont and State Agricultural College and Garrett A. Wollman. This product includes software developed for the FreeBSD project. This product includes software developed for the Internet Software Con- sortium by Ted Lemon. This product includes software developed for the NetBSD Project by Frank van der Linden. This product includes software developed for the NetBSD Project by Jason R. Thorpe. This product includes software developed for the NetBSD Project by John M. Vinopal. This product includes software developed for the NetBSD Project by Matthias Drochner. This product includes software developed for the NetBSD Project by Matthieu Herrb. This product includes software developed for the NetBSD Project by Perry E. Metzger. This product includes software developed for the NetBSD Project by Pier- mont Information Systems Inc. This product includes software developed for the NetBSD Project by Ted Lemon. This product includes software developed for the NetBSD Project by Wasabi Systems, Inc. This product includes software developed by LAN Media Corporation and its contributors. This product includes software developed by Michael Graff for the NetBSD Project. This product includes software developed by Niklas Hallqvist, C Stone and Job de Haas. This product includes software developed by Eric Young (eay@min- com.oz.au). This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes software developed by the University of Oregon. This product includes software developed by the University of Southern California and/or Information Sciences Institute. This product includes software developed by Internet Initiative Japan Inc. This product includes software developed by Reinoud Zandijk. This product includes software developed at the Information Technology Division, US Naval Research Laboratory. This product includes software developed at Ludd, University of Lule}, Sweden and its contributors. The End NetBSD September 7, 2002 47